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This publication, by reviewing 1300 studies published on autism in 2008, represents an update on this topic.
Results include possible parental influences, maternal conditions, and studies on genes and chromosomes.
Possible etiological factors involve the ‘‘extreme male brain,” defects in the mirror neuron system, vaccines,
underconnectivity, disorders of central coherence, and many other more specific etiologies. Assessments or
tests for autism are also reviewed. Characteristics of autistic individuals include repetitive behavior, lan-
guage disorders, sleep disturbances, social problems, joint attention disorders, seizures, allergic reactions,
and various behavioral changes. Cognitive changes involve IQ, reasoning, and verbal and language disor-
ders. The savant syndrome is a fascinating phenomenon, at times seen in autistic individuals. Neurophysi-
ological and neuroanatomical changes are also reviewed, as are comorbid conditions. Finally, treatment
involves various medications including risperidone, ziprasidone, and antipsychotic drugs, as well as differ-
ent procedures such as magnetic stimulation, acupuncture, and hyperbaric oxygen therapy. As mentioned
in the 2007 survey, nearly every conceivable problem that a child can have may be found in these unfortu-
nate children and nearly every conceivable etiology has been mentioned to account for this serious disorder.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction ents of children with autism. Wallace et al. [2] indicated that par-
In a previous publication [1], the present author reviewed studies
published on autism during the year 2007. The goal of this report is to
similarly review studies on autism published during the year 2008.

2. Method

Nearly 1300 reports were listed on Medline under the title
‘‘autism.” The reviewer chose to discuss in this report those studies
that came to some clear conclusion or included specific data. Disre-
garded were studies that were published in 2008 but were not listed
on Medline until 2009, and also those that were not exclusively on
the topic of autism or came to no specific conclusion. Genetic studies
are deemphasized here, especially because the previous report by
this reviewer on 2007 studies [1] indicated that a very large number
of genes and chromosomes seem to be involved, and therefore, pos-
sibly a review on this specific topic itself is required.

3. Results

3.1. Possible parental influences

3.1.1. Psychological changes
One of the major differences between the 2007 review and the

present one of 2008 is the number of studies implicating the par-
ll rights reserved.
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ents’ depression is associated with the child’s repetitive behavior
and parents’ anxiety is related to the child’s social communication
problems. Family history of depression and shyness were the sub-
ject of another study [3], and these family factors had the greatest
influence on socialization scores of the child. The authors con-
cluded that these results have obvious implication for genetics.
Daniels et al. [4] reported that parents of children with autism
are more likely to be hospitalized for some type of mental disorder
than controls and that depression and personality disorders are
more common among mothers than fathers. Others [5] have also
emphasized parents’ depression and anxiety, in addition to family
conflict, as predictive of symptoms of autism in the children.

Alexithymia is the inability to cope with and to describe emo-
tion. According to Szatmari et al. [6], parents of children with aut-
ism scored higher than controls on tests measuring this variable.
Also, children of fathers who had high scores showed a greater de-
gree of repetitive behavior, compared with children of fathers with
low scores on this variable of alexithymia.

3.1.2. Age
Using data from 1251 children with autism at 8 years of age,

Durkin et al. [7] showed that both maternal age and paternal age
are independently associated with autism. Odds ratios (ORs) for
autism increased to 1.3 for a maternal age of >35 years and to
1.4 for paternal age >40 years. Also, firstborn children of two older
parents were three times more likely to develop autism than a
third or later-born offspring of mothers 20–34 years of age and
fathers aged <40 years.

http://dx.doi.org/10.1016/j.yebeh.2009.09.023
mailto:jhughes@uic.edu
http://www.sciencedirect.com/science/journal/15255050
http://www.elsevier.com/locate/yebeh
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Another group [8] was more specific about age, concluding that
increased paternal age, but not maternal age, is associated with an
elevated (1.8-fold increase) risk of autism.

Weiser et al. [9] included 403,486 adolescents assessed for one
characteristic of autism, poor social functioning. The investigators
reported that the prevalence of the latter characteristic was in-
creased (OR = 1.27) in fathers both <20 and >45 years of age. Also,
male children of mothers >40 were 1.15 times more likely to have
poor social functioning. Furthermore, other investigators [10] re-
ported that mothers >35 were 1.7 times more likely to have a child
with autism.

3.1.3. Other parental characteristics
Meltzer [11] assessed the sleep of parents who had children

with autism and reported poorer sleep quality in those parents.
In particular, these parents had different sleep patterns, with an
earlier wake time and shorter total sleep time, compared with par-
ents of healthy children. Also, fathers had a shorter sleep time than
mothers.

In his early descriptions of autism, Kanner [12] noted that par-
ents of children with autism often exhibited unusual social behav-
ior themselves and so Adolphs et al. [13] assessed this particular
characteristic. They reported that these parents manifested a de-
crease in processing the eye region of faces and an increase in
viewing the mouth, just like the children with autism. These data
may provide a window into a subset of genes that contribute to so-
cial cognition.

Another group [14] reported that parents of children with aut-
ism have lower Performance IQ, but not Verbal IQ. Also, these same
parents had lower scores on a nonword repetition task, suggesting
problems in phonological processing.

One other characteristic of parents of children with autism is
that their costs for medical care for their families are substantially
increased. Montes and Halterman [15] reported that the average
loss of annual income for a family with a child with autism was
$6200, or 14% of the reported annual income.

3.2. Maternal conditions

Wallace et al. [2] reported that maternal hypertension, albu-
minuria, and generalized edema were associated with higher
repetitive behavior scores in the children with autism. Another
group [16] reported that the following conditions in infants and
mothers are associated with autism: (1) lower birth weight, (2)
lower gestational age, (3) male gender, (4) chorioamnionitis, (5)
acute intrapartum hemorrhage, (6) illness severity on admission
and (7) abnormal MRI of the infants. The authors emphasized very
low birth weight. Brown et al. [17] added further evidence that an
infection during pregnancy predicts a diagnosis of autism, and con-
cluded that other questionable factors are really not associated.
These included not (1) vomiting in the first trimester, (2) having
smell aversions, and (3) craving sweets. Another negative finding
was that the risk of autism remained unassociated with maternal
Rh status [18].

Rogers [19] noted the inverse association between maternal fo-
late status and incidence of neural tube defects (NTDs). However,
this author has asked the intriguing question of whether world-
wide enhanced folate status during pregnancy has altered the
prevalence of autism. The author has suggested that enhanced fo-
late status has changed natural selection by decreasing miscarriage
and therefore increasing survival rates during pregnancy of infants
possessing the MTHFR (5-methylenetetrahydrofolate reductase)
C677T polymorphism. These changes occur via a reduction in
hyperhomocysteinemia associated with this genotype, thereby
decreasing miscarriage rates of infants who otherwise may have
not survived. This situation points to an increased rate of birth of
infants with higher postnatal requirements for folic acid needed
for normal methylation, leading to an increased number of cases
of developmental disorders, like autism. Thus, the author points
to an intriguing coincidence between a decreasing incidence of
NTDs and an increasing incidence of autism.

James [20] tested the theory that various disorders, including
autism, are caused by high maternal intrauterine testosterone lev-
els by determining the number of brothers among siblings.
Although the data suggest that reading disorders may be caused
by high testosterone levels, the data on autism were not
significant.

Other investigators [21] studied whether births at certain
months of the year were associated with autism. They reported
peaks of autism in April, June, and October for single births and
1 month earlier in March, May, and September for multiple births
in males. In 2005, Hughes and Melyn [22] had reported peaks in
May and October for all children with autism. These seasonal
trends suggest a role for nonheritable factors, even in cases with
a genetic susceptibility.

3.3. Genes and chromosomes

As mentioned under Methods, the discussion of genes and chro-
mosomes is deemphasized in this report, but a few general points
need to be mentioned. One of the reasons for this deemphasis can
be found in a report by Wall et al. [23]. These authors identified
154 genes not previously linked to autism, of which 42% were dif-
ferentially expressed in children with autism. Furthermore, the
investigators uncovered 334 new genes that interact with pub-
lished autism genes, of which 87% were differentially regulated
in individuals with autism. Perhaps, it was the great number of
implicated genes that led Freitag [24] to conclude that ‘‘the major-
ity of autistic disorders are genetic in origin.”

One new area of interest is the imprinting gene [25], expression
of which is determined by the parent who contributed it. Crespi
and Badcock [26] have proposed that autism is mediated in part
by changes in genomic imprinting. They have suggested that
imprinting genes with maternal expression engender a general
pattern of neural undergrowth, as seen in schizophrenia. By con-
trast, autism appears to involve a relative bias toward effects of
paternally expressed genes, which mediate overgrowth, as may
be seen in autism.

One other interesting hypothesis [27] is that dysregulation of
brain-expressed genes on the X chromosome constitutes the major
predisposition to autism. This dysregulation is mediated by the
hypo- or hypermethylation of cytosine guanine sites with gene
promoters, leading to over- or underexpression of brain-expressed
genes. This condition results in an unbalanced production of pro-
teins responsible for brain structure and function. This same
hypothesis is consistent with the predominantly sporadic occur-
rence of autism, male excess among children with autism, and
the usual absence of malformations in this same group.

The complexity of so many genes that have thus far been named
in autism is expressed by Basu et al. [28], who have established a
disease-driven database in which all genes connected to autism
are collected from all laboratories.

3.4. Possible etiologies

3.4.1. Extreme male brain
As females are often considered to excel over males in empathy

and social relationships and deficiency of this characteristic repre-
sents the hallmark of autism, children with autism may be viewed
as having ‘‘an extreme male brain.” James [20] checked to see if
high fetal testosterone (fT) levels could be found in mothers who
had children with autism. Although fT levels in reading disabilities



J.R. Hughes / Epilepsy & Behavior 16 (2009) 569–589 571
and attention deficit hyperactivity disorder (ADHD) were signifi-
cantly high, levels in mothers with children with autism were
not. Theoretically, Barbeau et al. [29] argued that fT levels in aut-
ism fail to account for a major part of autism and the weak link be-
tween fT and autism traits hardly demonstrates the causal link
between the two.

On the other hand, other investigators [30] performed amnio-
centesis on 193 mothers who, with their own children, completed
a test measuring empathy. There was a significant negative corre-
lation between fT levels and test scores, suggesting that deficiency
in empathy may be influenced by and mediated by the effects of
high androgen levels on the brain. Also, Auyeung et al. [31] re-
ported on the relationship between levels of fT (N = 235) and tests
measuring traits of autism. The fT levels were positively associated
with higher scores on the tests measuring autism, suggesting that
greater androgen exposure is related to children exhibiting more
autistic traits.

Finally, another group [32] used the EEG rhythm mu waves,
responsive to movements of one’s self or observing those of others,
as a reliable indicator of the human mirror-neuron system, viewed
as deficient in autism. Females showed stronger mu suppression
when viewing hand actions of others, also positively correlated
with the personal distress subscale of the interpersonal reactivity
test. The authors concluded that their findings lend support to
the ‘‘extreme male brain” theory.

3.4.2. Deficient mirror-neuron system
Mirror neurons are those brain cells that are active not only

while one is reacting but also when one is observing others in
the outside world. As autism is characterized by domination of
one’s ‘‘inside world,” these neurons are viewed as deficient in chil-
dren with autism. In the aforementioned study [32], the authors
concluded that the mu rhythms in the human mirror-neuron sys-
tem (MNS) can be a potential biomarker of empathy. Oberman
et al. [33] also used mu suppression to investigate the MNS and re-
ported that the suppression was sensitive to the degree of familiar-
ity of the person viewed on the screen by the subject. The authors
suggested that the MNS responded to observed actions, but only
when familiar individuals were seen. Another group [34] also used
EEG desynchronization during observation of various scenes and
reported that no desynchronization occurred in children with aut-
ism, but this phenomenon did occur in healthy children. The
authors concluded there was an impairment of the MNS in autism.

Another way to judge the MNS is to compare effects on patients
with autism between different persons versus within the person.
Welsh et al. [35] reported that autistic individuals did not demon-
strate a between-person effect in which they were to observe the
movement of a partner, but did show a within-person effect, as evi-
dence for a MNS dysfunction in autism. Another report [36] indi-
cated that in autism there was impairment in the ability to
identify envy and gloating. Also, the ability to recognize these emo-
tions was related to scores measuring the capability to appreciate
perspective. Another group [37] tested the MNS by measuring
skills to convert sensory stimuli into motor representations. Indi-
viduals with autism were capable of the task only 56% of the time,
in contrast to 88% for healthy individuals. This impairment of mul-
tisensory integrations was viewed as an example of an impairment
of the MNS.

The MNS has as times been linked to the Theory of Mind (ToM),
representing a ‘‘domain-specific mechanism for metarepresenta-
tion of mental states” [38]. The authors, Stone and Gerrans, con-
cluded that if deficits on ToM tasks can result from deficits on
low-level specific input systems (like tracking gaze) or higher-level
general capacities, then postulating a separate ToM mechanism
may be unnecessary. For other authors, like Colvert et al. [39],
ToM is still a viable construct, measured in their study by the
Strange Stories Task, with scores indicating deficiencies in a group
of children with institutional deprivation who then developed aut-
ism-like symptoms.

Not all investigators have agreed with the usefulness of the con-
cept of the MNS. Southgate and Hamilton [40] referred to the ‘‘bro-
ken mirror” theory and stated that the failure in children with
autism to imitate requires much more than the MNS, which they
viewed as premature. Leighton et al. [41] went one step further
by stating that ‘‘impairments in imitation skills should not be cited
as evidence consistent with mirror system deficient theory.” They
showed evidence that subjects with autism were as impaired on
nonimitative tasks as on imitative tasks.

3.4.3. Vaccines (mercury-containing thimerosal)
A major controversy in autism has been whether or not thimer-

osal (T), a mercury-containing preservative used in some vaccines
in the past, is in any way responsible for autism. In the survey of
autism studies published in 2007, this reviewer presented consid-
erable evidence against the possibility that thimerosal has played a
significant role as an etiological factor of autism [1]. In 2008,
Schechter and Grether [42] reported that exclusion of thimerosal
from vaccines in the United States was accelerated from 1999 to
2001. As the prevalence of autism in California’s developmental
services system increased for each quarter from 1995 to 2007,
the conclusion of the authors was that the ‘‘data do not support
the hypothesis that exposure to thimerosal during childhood is a
primary cause of autism.” Croen et al. [18] approached the problem
differently by investigating the association between prenatal expo-
sure of maternal Rh-D status to thimerosal-containing anti-D im-
mune globulin and the risk of autism. Their conclusion was that
the risk of autism was unassociated with the latter factor, support-
ing the position that prenatal exposure to thimerosal-containing
anti-D immune globulins does not increase the risk of autism.

A novel approach to this problem of possible mercury poisoning
is found in a study by Palmer et al. [43], who determined the rela-
tionship between the proximity to sources of mercury pollution
and prevalence of autism. These authors claimed that for every
1000 pounds of industrial release of mercury, there was a corre-
sponding 2.6% increase in autism rates, but a 3.7% increase in
power plant emissions. For every 10 miles from industrial sources
there was an associated decreased autism risk of 2.0%, suggesting
no clear relationship between mercury and autism.

The Food and Drug Administration [44], updated on June 3,
2008, has stated, ‘‘Thimerosal has been removed from or reduced
to trace amounts of all vaccines routinely recommended for chil-
dren 6 years of age and younger, with the exception of inactivated
influenza vaccine. A preservative-free version of the inactivated
influenza vaccine (contains trace amounts of thimerosal) is
available.”

Other reports, however, may be keeping this controversy alive.
For example, Cave [45] provided the history on this problem,
reminding us that after Leo Kanner’s first description in the
1940s [12], the incidence of autism before the 1970s was said to
be 1 in 10,000, but has steadily increased to 1 in 150 in 2008. Many
have believed that an environmental trigger, like T, used in vac-
cines since 1931, may be involved. Cave also reported that the
Hannah Poling vaccine decision was a landmark case. The family
was awarded funds to care for their child with autism who was
found to have a mitochondrial dysfunction, considered to have
been exacerbated by vaccines. It is known that children with mito-
chondrial dysfunction at times have autism, and so the award was
for the exacerbation of that mitochondrial dysfunction and not, as
many parents of children with autism had wished, for the vaccine
causing autism. A recent court decision, the ‘‘Vaccine Court Omni-
bus Autism Proceeding,” [46] confirmed the latter point on Febru-
ary 16, 2009.
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Another court decision on vaccines as a possible cause of autism
was reviewed in the American Medical News on April 13, 2009: ‘‘On
February 12 a panel of U.S. Court of Federal Claims judges, known
as special masters, released its findings ‘‘that the vaccines were not
to blame.” This decision was based on 5000 pages of transcript,
more than 700 pages of post-hearing briefs, 939 medical articles,
50 expert reports, and 28 expert witnesses. This decision should
put an end to this controversy.

Yet still other data may continue to keep this controversy alive.
Branch [47] has provided data that are based on mice, but are sug-
gestive of the human condition. Human autism occurs nearly four
to eight times more frequently in males. In this study, mice were
given the maximum tolerated dose of thimerosal. Seven of seven
male mice, compared with none of seven female mice, succumbed
to thimerosal, indicating a gender-selective toxicity of thimerosal.

Geier et al. [48] studied biomarkers of environmental toxicity
and susceptibility to autism. Participants with severe autism
showed increased mercury intoxication-associated urinary por-
phyrins, compared with those with only mild autism. Also, they
showed decreased levels of reduced glutathione, cysteine, and sul-
fate. The porphyrins were correlated with increasing autism scores,
suggesting that mercury intoxication may be associated with autis-
tic symptoms.

Young and the two Geiers [49] studied possible associations be-
tween neurodevelopmental disorders and exposure to thimerosal.
A total of 278,624 subjects who had received vaccines from 1990 to
1996 were studied, and it was reported that increased rate ratios of
mercury were observed for autism and other disorders like ADHD
and tics. By contrast, none of the control outcomes had increased
rate ratios with mercury exposure. Another group [50] provided
evidence that acetaminophen use after MMR vaccination is associ-
ated with autism.

Smith et al. [51] were concerned about the possibility that med-
ia coverage of the measles–mumps–rubella (MMR) vaccine/autism
controversy may have contributed to this question. They reported
that as few as 0.77% of children in 1995 failed to receive MMR vac-
cine, increasing to 2.1% in 2000 and returning to baseline before
sustained media coverage of this controversy flourished. Thus, this
finding suggested a limited influence of the mainstream media on
the MMR immunization/autism controversy. One other study [52]
was concerned about the presence of measles virus (MV) RNA in
bowel tissue of children with autism, but the authors found no dif-
ference between cases with autism and controls, as evidence
against autism being related to persistent MV RNA.

3.4.4. Underconnectivity
The present reviewer [53] previously summarized the data sug-

gesting that one firm finding in autism is underconnectivity. Fur-
ther data include the report [54] that the adult brain in autism
shows reduced connectivity in the right inferior frontal cortex.
Molloy et al. [55] reported that the increase in seizures in children
with autism and trisomy 21 may indicate a loss of connectivity,
also emphasized by Rapin and Tuchman [56]. Others [57] have dis-
cussed the growing body of evidence of reduced functional and
structural connectivity in autism. Wicker et al. [58] reported
abnormal connectivity, especially involving the prefrontal cortex.
Another investigation [59] associated the reduction in connectivity
with reduced variability in motor behavior.

O’Connor and Kirk [60] associated increased activation of occip-
ital-temporal regions and reduced connectivity with atypical social
behavior in autism. Another group [61] explained the savant syn-
drome often associated with autism, by pointing to the long-range
connectivity that is likely disrupted, but then with a compensated
enhanced local connectivity to explain the superior abilities. Tom-
merdahl et al. [62] proposed that functional minicolumns in autism
were smaller in size, leading to global dysfunctional connectivity
across cortical areas. Another group [63] reported that fractional
anisotropy was lower in autism for short-range fibers, but not for
long-range fibers. Finally, Coben et al. [64] showed hypocoherence
in EEG signals suggesting neural underconnectivity.

3.4.5. Weak central coherence: Integration of diverse detailed
information

Lopez et al. [65] assumed that if there was a central integration
mechanism disorder, then the performance on a memory and a
face recognition task should be related. No relationship was found,
suggesting that central coherence was not a unitary construct.
Also, other data [66] indicated that executive impairments were
neither universal nor exclusive in the group with autism, suggest-
ing an alternative cognitive theory. However, Ring et al. [67] exam-
ined clustering of symptoms and reported results that were
consistent with a unitary spectrum model, especially in those with
severe autism. Another group [68] investigated whether visuospa-
tial analysis in autism extended into the general population, con-
cluding with support for a weak central coherence theory in
autism with emphasis on details rather than the whole of any
question. The same conclusion was reached by Brock et al. [69]
in a study on eye movements. Finally, one group [70] studied per-
formance on two visual tasks, concluding that children with autism
showed a deficit in holistic processing as an example of the failure
in autism to deal with the whole instead of the details.

3.4.6. Various specific etiologies
3.4.6.1. Mitochondrial dysfunction. As previously mentioned, Cave
[45] reported that the Poling legal case was about the exacerbation
of the mitochondrial dysfunction by vaccines, supporting the fact
that a significant number of children with autism do have such a
dysfunction.

Weissman et al. [71] explored the association between autism
and mitochondrial oxidative phosphorylation. All of their patients
had an initial diagnosis of idiopathic autism, but careful investiga-
tion identified clinical findings different from those of idiopathic
autism. The data suggested a disturbance of mitochondrial energy
production as an underlying mechanism in a subset of individuals
with autism. Garcia-Penas [72] also investigated the relationship
between mitochondrial disease and autism, reporting that high
lactate levels in some patients suggest a disturbed bioenergetic
metabolism. Like Weissman et al. [71], Garcia-Penas considered
that a likely possibility may involve a dysfunction in mitochondrial
oxidative phosphorylation in neurons [72]. Although this type of
dysfunction may be a rare cause of autism, this etiology must be
at least considered in some children with autism.

3.4.6.2. Immunological disorders. Blaylock [73] noted the relation-
ship between food allergies, gut dysbiosis (poor vitality), and
abnormal formation of the developing brain. He proposed that re-
peated microglial activation can result in an increase in excitotox-
ins, resulting in arrest of neural migration, all under the term
immunoexcitotoxicity.

Ashwood et al. [74] provided data and also a theory involving
immune dysregulation. The investigators evaluated 75 children
with autism, reporting low plasma transforming growth factor
(TGF) b1 levels. The levels correlated with lower adaptive behav-
iors and worse behavioral symptoms. These data suggested that
immune responses in autism may be inappropriately regulated as
a result of decreases in TGF b1 levels.

Other investigators [75] studied folate receptor (FR) autoimmu-
nity and cerebral folate deficiency. Evaluated were children (25)
with autism who showed normal serum folate levels but low cere-
brospinal fluid folate levels, possibly explained by FR autoantibod-
ies blocking the folate binding site. The conclusion was that serum



J.R. Hughes / Epilepsy & Behavior 16 (2009) 569–589 573
FR autoimmunity may represent an important factor in reduced fo-
late transport in autism.

3.4.6.3. Congenital and neurological disorders. Chen et al. [76] stud-
ied 3440 children with autism and reported greatly elevated risks
of congenital anomalies, like tuberous sclerosis, and neurological
disorders, like epilepsy, with odds ratios of 34 and 5, respectively.
The authors concluded that these disorders may provide etiological
implications in autism.

As an example of a neurological disorder, Singh et al. [77] pro-
posed that a clinically relevant measure is cortical thickness as a
classifier in autism. Another example was cortical folding [78]; in-
creased three-dimensional folding in the frontal, parietal, and tem-
poral lobes was demonstrated in children with autism as compared
with controls. These differences were greater in children than in
adolescents with autism.

3.4.6.4. Deficient proteins. Hagerman [79] was concerned with the
fragile X mental retardation protein (FXMRP) and reported that
when some of these proteins are missing, there is a dysregulation
of other proteins known to cause autism. This FXMRP protein pro-
vides for inhibition of protein production in the metabotropic glu-
tamate receptor 5 pathway (mGluR5). The conclusion was that
these mGluR5 antagonists are likely involved in a subgroup of pa-
tients with autism. Other authors [80] have agreed that protein
synthesis may be an etiological factor in autism. In particular, aber-
rant synaptic protein synthesis was proposed by these latter inves-
tigators as leading to autism, with characteristics of cognitive
impairment and savant abilities.

3.4.6.5. Metabolic disorders. Maimburg et al. [81] studied 473 chil-
dren with autism and reported that infants who had hyperbilirubi-
nemia after birth had an almost fourfold risk for autism. Also, a
strong association was observed between abnormal neurological
signs after birth, especially hypertonicity, and autism. One short
report [82] referred to two children in Saudi Arabia with G6PD
(glucose-6-phosphate dehydrogenase) deficiency, a condition that
has previously been reported to be associated with autism. Austin
and Shandley [83] studied atypical urinary porphyrin profiles as an
indirect measure of environmental toxicity. In a sample of Austra-
lian children with autism, the authors reported a consistent trend
in abnormal porphyrin levels and referred to data demonstrating
porphyrinuria concomitant with autism. Geier et al. [84] evaluated
transsulfuration metabolites in children with autism. They re-
ported decreased plasma reduced glutathione, cysteine, taurine,
and sulfate levels, but increased plasma oxidized glutathione lev-
els. The authors concluded that these data are compatible with in-
creased oxidative stress and decreased detoxification capacity in
patients with autism. Vojdani et al. [85] provided additional evi-
dence of low intracellular levels of glutathione in these children
and concluded that these levels are related to low natural killer cell
activity in autism. Another group [86] studied dopamine transport-
ers and reported an increase of the latter in autism, concluding that
the dopaminergic nervous system is dysfunctional in autism.

Another group of investigators [87] studied the metabolism of
serotonin following the administration of L-5-hydrotryptophan
(5-HTP) to persons with autism. They reported decreased dehydro-
epiandrosterone sulfate (DHEA-S) responses. These results sug-
gested that autism is accompanied by a major dysequilibrium in
the serotonergic system.

Rout and Dhossche [88] noted that loss of Purkinje cells and cer-
ebellar atrophy are commonly observed in autism and proposed
that this cell loss was triggered by glutamic acid decarboxylase
antibody (GAD-Ab). This model accommodates to any genetic basis
of autism, and the identification of GAD-Ab from pregnant mothers
may allow preventive avenues.
As previously noted, Rogers [19] pointed to the increased use of
folic acid in mothers, which increases the key enzyme for methyl-
ation, methylenetetrahydrofolate reductase (MTHFR), which in-
creases plasma homocysteine. The latter hyperhomocysteinemia,
in the presence of the MTHFR-C677T polymorphism, modifies mis-
carriage rates and may be related to the development of autism.

Another group [89] noted the involvement of digestive tract
dysfunction in children with autism and found that there were
lower urinary levels of essential amino acids in both treated and
untreated children. The conclusion was that these results repre-
sented evidence of altered metabolic homeostasis.

Hardan et al. [90] were concerned with thalamic alterations
using magnetic resonance spectroscopy (MRS) and reported lower
levels of N-acetylaspartate, phosphocreatine, and creatine on the
left side of the thalamus. Some relationships were observed be-
tween these metabolites and measures of sensory abnormalities.
In another study [91] in children with autism, morning cortisol lev-
els were reported to be decreased, whereas higher evening values
were maintained, with variability in all these levels. The conclusion
was that these results indicate a dysregulation of the circadian
rhythms in autism.

Some studies have provided negative evidence for factors pre-
sumed in the past to be involved with autism. Russo [92] reported
that a large number of autistic family members had high levels of
anti-metallothionein IgG, but these antibodies did not correlate
with autism. Also, some investigators have claimed that the urine
of children with autism contains exogenously derived opioid pep-
tides, but studies showed no differences between the urinary pro-
files of children with autism and those of controls [93].

3.4.6.6. Interactions. Stefanatos [94] discussed the multiple etiolog-
ical factors currently hypothesized in autism, and others [95] have
agreed that the etiology seems to be multifaceted, including both
heritable and nonheritable factors. The present section here on
possible etiological factors attests to this latter point. Another
group [96] maintained that even part of the genetic load in autism
may reflect gene–environment interaction. On a much more spe-
cific point of some surprise, Waldman et al. [97] showed that the
prevalence of autism was positively associated with the annual
precipitation of a given region. The investigators concluded that
this may be an environmental trigger among genetically vulnera-
ble children.

3.4.6.7. The intense world syndrome. Markram et al. [98], using a rat
model, proposed that the autistic brain is hyperreactive with hyper-
plasticity of local neuronal circuits, leading to hyperperception,
hyperattention, and hypermemory. This hyperfunctionality then
turns debilitating, and the excessive neuronal processing renders
the world painfully intense, hence the ‘‘intense world syndrome.”
Although a few data may be consistent with this interesting
hypothesis, there are many examples of hypofunctioning neuronal
circuits in autism.

3.5. Assessment

Various measures and tests have been used to assess autism.
Williams et al. [99] reported assessment in school developmental
disability determinations and also in a hospital setting. The rate
of agreement between different evaluators was only 45%. Another
group [100] compared parents’ evaluation with one standard test
in autism, the Modified Checklist for Autism in Toddlers (M-CHAT).
The parents missed the majority (84%) of children who screened
positive on the M-CHAT. Other studies [101] showed a low agree-
ment index between mothers’ and professionals’ observations.
Stone et al. [102] used the Screening Tool for Autism in Two-
Year-Olds (STAT) and reported a positive predictive score of only
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56%, with false positives highest for the age group 12–13 months.
Other results [103] were consistent with the latter study, showing
that the positive prediction percentage was not as good under
24 months of age than at 24 months. On the other hand, Ozonoff
et al. [104] found that repetitive behaviors in children with autism
as young as 12 months were related to cognitive status at
36 months. Others [105] were concerned about the usefulness of
M-CHAT in Arab countries and reported a positive predictive value
of 88%. Another test, the Childhood Autism Spectrum Test (CAST),
was used by Williams et al. [106] on 3370 children 4–9 years of
age; scores were reported to be higher in males who were predom-
inant at a ratio of 4:1 for scores >15. These data must be considered
in dealing with communication skills in boys and girls.

There are other means of testing for autism. Esposito et al. [107]
used static and dynamic symmetry during walking and moving to
judge autism and reported significant differences between children
with autism and controls as early as 5 months of age. Early onset of
autism was more likely to be found with lower levels of symmetry,
which can be used as an early indicator of potential autism. Repet-
itive and stereotyped movements were used by others [108] to
determine autism and to support the diagnostic significance of
these movements under 24 months of age.

One other measure used by Schendel and Bhasin [109] com-
prised birth weight and gestational age. Birth weight <2500 g and
preterm birth at <33 weeks gestational age were associated with
a twofold increased risk for autism.

3.6. Characteristics

3.6.1. Repetitive behavior
Lam et al. [110] described three distinct factors in autism,

including repetitive motor behavior (RMB), insistence on same-
ness, and circumscribed interests. The RMB was associated with
more impairment in the social and communication domains. Other
investigators [111] provided evidence that independent genes
were involved in RMB, compared with the two other important
impairments of social skills and communication. Another group
[112] emphasized that these movements were less frequent and
less severe in older individuals with autism. Phagava et al. [113]
found that these children exhibited abnormal writhing and fidgety
movements as early as 2–5 months. Others [114] explored whether
one type of RMB, walking, could distinguish the group with autism,
and after 6 months of independent walking, different patterns
were seen in children with autism, similar to the aforementioned
report [107]. It was during the second year that Watt et al. [115]
claimed that RMB was related to social incompetence and could
predict the severity of autism symptoms at 3 years.

3.6.2. Specific language impairment
Loucas et al. [116] investigated whether a specific language

impairment (LI) was related to other symptoms of autism and re-
ported that the co-occurrence of LI and other symptoms of autism
was not generally associated with increased symptoms of autism,
but only with greater impairment of functional communication.
Williams et al. [117] would likely agree because their main empha-
sis was that LI in autism cannot be explained by a comorbid spe-
cific LI. Other investigators [118] were also concerned with a
specific LI and investigated cerebral dominance in particular. They
reported that 82% of the group with autism showed left hemi-
sphere dominance, whereas those with a specific LI had right hemi-
sphere (55%) or bilateral (27%) involvement. Thus, according to
these authors, atypical cerebral dominance was not implicated in
autism. Prosody is one characteristic of speech and another group
[119] showed that adolescents with autism had difficulty using
prosody to clarify syntax. With a similar age group, Baird et al.
[120] reported that 38% of those with autism showed language
regression, as opposed to only 3% with such regression but with
developmental problems without autism. Finally, other data
[121] indicated that 50% of children with autism and severe LI used
challenging behavior as a form of expressive communication in a
school environment.

3.6.3. Sleep disorders
Matsuura et al. [122] studied sleep patterns in children with

autism and reported that young infants with autism often experi-
ence sleep difficulties. In particular, great changes in sleep onset
and waking times, frequent night waking, and fragmented sleep
patterns were observed in early infantile autism, in addition to
an irregular sleep–wake cycle, also reported by others [123].
Krakowiak et al. [124] added further confirmation that the major-
ity (53%) of children with autism had at least one frequent sleep
problem, usually high scores on sleep onset and night waking.

3.6.4. Social problems
One group of investigators [125] attempted to identify the de-

gree to which early symptoms of autism could be predictive of la-
ter symptoms. They reported that social interaction was closely
related to one factor, namely, social communication. An additional
factor was anxious and compulsive behavior that affected commu-
nication functioning. Ben-Sasson et al. [126] reported that the
greatest differences between children with autism and controls
with respect to symptoms of sensory modulation and affective so-
cial problems was underresponsivity, followed by overresponsivity
and sensation-seeking behavior. Other investigators [127] reported
that children with autism were likely less sensitive to emotional
information conveyed by human movement, representing a deficit
in emotional perception that would likely lead to social problems.
Hartley et al. [128] provided data that would have clear impact on
these social relationships. They showed high scores in the group
with autism on withdrawal, attention, and aggression, as well as
significant maladaptive behavior, highlighting the need to include
ways to increase social engagement. One other study [129] would
have possible impact on social relationships in that patients with
mood disorders scored high on autism symptom scales. The
authors emphasized the importance of identifying social reciproc-
ity and communication deficits in patients with autism. Other
studies include results that show withdrawn behavior and social
problems [130] and, finally impairment, in identifying envy and
gloating [36], in addition to bipolar mood disorders [131], low po-
sitive affect, and high negative affect [132]. These latter disorders
would likely have an impact on social relationships.

3.6.5. Joint attention disorders
One group [133] studied joint attention in autism and reported

that 2- to 3-year-old children with autism displayed deficits in
joint attention ability, especially on high-level skills and often
leading to social communicative difficulties. Roos et al. [134]
pointed out that joint attention deficits may be a core feature of
autism. They reported a positive correlation between initiation
and response to joint attention. Also, Adamson et al. [135] empha-
sized the persistence of coordinated joint attention deficits. Two
studies cast some doubt on how important joint attention may
be in autism. For example, one investigation [136] showed that
selective or sustained attention was not altered in autism, even
though more problems were seen in joint attention skills. On the
other hand, Rutherford et al. [137] reported that, contrary to some
predictions, individuals with autism tended to show relatively
smaller divided attention problems than did matched controls.

3.6.6. Seizures
Mouridsen et al. [138] reported that the mortality risk of per-

sons with autism was nearly twice that of the general population.
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Of the 26 deaths they reported, nearly one-half (46%) were associ-
ated with epilepsy. Another group [139] reviewed 2112 patients
with autism and intellectual disability (ID), in addition to 1530
other patients with autism. More patients with autism and also
with ID had epilepsy (21.5%) than those without ID (8%). The
male:female ratio with epilepsy with 2:1, whereas the ratio with-
out epilepsy was 3.5:1. These studies indicate that ID and female
gender show a relatively high association with seizures. Other
investigators [140] studied the risk problems in autism and con-
cluded that epileptic seizures and epileptiform EEG abnormalities
were the most important factors, in addition to non-right-handed-
ness, hypotonia, and decreased IQ. Another group [141] showed
that seizures were associated with behavior regression, similar to
the conclusion made by other investigators [142] that epilepsy
and regression were, in fact, associated. Giannotti et al. [143] also
concluded that epilepsy and epileptiform patterns are more
frequent in regressed children.

3.6.7. Dentition
Loo et al. [144] published results that may be surprising to

some: they reported that children with autism were more likely
to be caries-free and have fewer decayed, missing, or filled teeth
compared with controls. However, they indicated that this group
was usually uncooperative and usually required general anesthesia
to carry out examinations and treatments. Also, 52% of parents
were reported [145] to consider the dentition of their children with
autism (52%) as excellent or very good, compared with 69% of par-
ents of children without autism. Dentists have reminded this re-
viewer that stereotyped behavior likely explains why some of
these children may take excellent care of their teeth. The number
of children with fair or poor teeth with autism was similar to that
for children without autism. Thus, the results for dentition in aut-
ism vary.

3.6.8. Allergic reactions
Some investigators [146] had noted that a subset of children

with autism may have frequent infections, accompanied by a de-
crease in acquired skills. They measured proinflammatory and
counterregulatory cytokines and concluded that the clinical fea-
tures in autism were not associated with atopy, asthma, food al-
lergy, or primary immunodeficiency. Another group [147]
reported that 30% of children with autism had a family history sug-
gestive of atopy, but none with respiratory allergy, 48% with one
positive skin test, but similar to controls. The conclusion was that
allergic features were not frequent in children with autism, even in
those with a positive family history.

3.6.9. Various behavioral changes
Sinzig et al. [148] were concerned with executive function and

reported that children with autism were impaired in planning
and feasibility functions. When behavior was studied in the form
of physical activity at school recess, children with autism were less
active than controls [149]. Another group [60] concluded that
atypical social behavior in autism was likely a consequence of a
general processing difference rather than an impairment in social
cognition. Minshawi [150] pointed out that self-injurious behavior
was common in children with autism and recommended treatment
for this type of behavior. Other investigators [151] studied symbolic
play and reported that children with autism showed less playful
pretend behavior. Consistent with the latter results, Preissler
[152] concluded that children with autism have difficulty
understanding the symbolic nature of pictures by demonstrat-
ing difficulties in learning picture–word and picture–object
relationships.

One last characteristic, not directly behavioral, is the greater
height and weight of children with autism, compared with con-
trols, but the authors [153] concluded that with older age, height
decreased but the risk for overweight increased.

3.7. Cognitive changes

3.7.1. IQ
Although cognitive changes could be considered one of the

characteristics of autism and therefore could have been discussed
in the last section, its significance and importance required it to
be dealt with in a separate section. One group [154] was concerned
with two different assessments: Raven’s Progressive Matrices
(RPM) and Wechsler Intelligence Scale for Children (WISC).
Although the average RPM scores were higher than the WISC
scores only for those with IQ <85, the authors recommended the
WISC as the first-choice measure. Banach et al. [155] were con-
cerned with gender and family size, reporting that in families with
a single child, girls had a lower IQ than boys, but no such differ-
ences were observed in families with more than one child. Another
group [156], investigating differences between children with
Asperger syndrome and autism, reported that 18% of the group
with autism had a Verbal IQ higher than the Performance IQ, sup-
posedly characteristic of Asperger. The conclusion was that this IQ
profile was not a valid discriminator between the two disorders.

3.7.2. Reasoning
Pijnacker et al. [157] studied defeasible reasoning (that which is

capable of being undone) in high-functioning individuals with aut-
ism. Their conclusion was that this group had specific difficulty
with handling exceptions during reasoning that required mental
feasibility, suggesting that defeasible reasoning was also involved.
The same group [158], 1 month later, reported on pragmatic rea-
soning, finding a deficiency in the group with autism, different
from that of the individuals with Asperger syndrome. Pragmatism
was also the area of interest in another study [159] dealing with
illogical thinking and loose associations characteristic of autism.
The authors concluded that the formal thought disorder in autism
was related to pragmatic language abnormalities. De Martino et al.
[160] examined emotional responses and their effect on decisions,
concluding that the group with autism often failed to incorporate
emotional context into the decision-making process, thus showing
an ‘‘insensitivity to contextual frame.” Lind and Bowler [161]
investigated a slightly different aspect, in part related to reasoning:
extended self-awareness. The group with autism exhibited signifi-
cant impairments in the Theory of Mind tasks, manifesting as re-
duced use of personal pronouns to refer to themselves.

3.7.3. Verbal and general language disorders
Gabig [162] examined verbal working memory and language

ability in a group with autism and concluded that the latter group
showed deficits, especially in more complex verbal memory tasks.
These deficits would likely affect cognition in autism. Others [163]
attempted to predict various characteristics in toddlers 18–
33 months old. Nonverbal cognitive ability predicted both recep-
tive and expressive language. Furthermore, other predictors of
receptive language included gestures and response to joint atten-
tion, and for expressive language, both gestures and imitation were
predictors. The importance of a language disorder versus the autis-
tic disorder and the possible confusion surrounding the differences
in these two entities were well illustrated by Bishop et al. [164].
These investigators reported that 32% of patients with earlier diag-
nosed developmental language disorder ‘‘would nowadays be diag-
nosed unambiguously with autistic disorder.” Another example of
changing diagnoses was shown by a study [165] finding that 28% of
adolescents with ID, both severe and mild ID, were later identified
as being autistic. This study may also indicate why the prevalence
of autism seems to be increasing. Matson and Rivet [166] explored
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the differences between ID and autism in a different way. They re-
ported that patients with autism differed from those with ID in
challenging behavior, manifesting mainly as aggression, self-injuri-
ous stereotyped behavior, and disruptive behavior. The frequency
of this challenging behavior increased with the severity of autistic
symptoms.

3.8. Sensory changes in general

A number of studies have indicated that patients with autism
have diminished sensation in general. For example, Brown et al.
[167] reported that these children had significantly lower sensory
processing scores in all 14 categories tested. Another group [168]
reported a significant correlation between the degree of sensory
abnormalities and the amount of repetitive behavior, but observed
no link with cognitive function. Oberman and Ramachandran [37]
asked subjects to pair nonsense shapes with nonsense words and
reported that the group with autism performed poorly on this test;
they concluded that there was a deficit in the multisensory inte-
gration system. Another group [169] studied sensory deficits and
their anatomical basis, concluding that brainstem abnormalities,
specifically in gray matter structures, were involved. One investi-
gator [170] studied auditory perception irregularities in children
with autism and concluded that they are important in understand-
ing this condition. Roberts et al. [171], through magnetoencephalo-
graphic studies, investigated auditory processing abnormalities,
offering promise for assessing developmental neuropsychiatric
disorders.

On the other hand, other studies have reported effects that may
be considered opposite to some of the aforementioned results.
Minshew and Hobson [172] reported that 32% of participants with
autism endorsed more items involving sensory hypersensitivity
than controls. These results support the common occurrence of
sensory symptoms reported by children with autism, likely from
increased sensitivity. Markram et al. [98] would likely agree in
general with the latter authors and concluded that the core pathol-
ogy of the autistic brain is hyperreactivity leading to hyperpercep-
tion, hyperattention, and hypermemory. The excessive neuronal
processing renders the world painfully intense, leading to their ‘‘in-
tense world syndrome.” Another group that would also generally
agree is Vaccarino et al. [173], who concluded that an increased
number of cortical excitatory neurons may underlie the increased
brain volume. This excessive network excitability would be ex-
pected to lead to sensory reactivity and seizures. Another study
[174] reported an accelerated response time to a visual test, and
this advantage is likely related to enhanced perceptual functioning.

The last two paragraphs have described conclusions that coun-
ter each other. Ben-Sasson et al. [175] may have a unifying study
that used the Infant Toddler Sensory Profile in 170 children with
autism. Three clusters were identified: (1) 44 with a low frequency
of sensory symptoms, (2) 49 with a high frequency of these symp-
toms, and (3) 77 with mixed symptoms. Parents rated those with
high or mixed frequency as higher on negative emotion and
depression and also anxiety symptoms. Thus, this study indicates
that either a high or a low frequency of sensory symptoms can
be observed in a group with autism.

One final study dealing with sensory symptoms and perception
was that by Chamak et al. [176], who summarized the highlights of
the personal experiences of adults with autism. Their core symp-
toms in autism were unusual perceptions, in addition to impaired
informational processing and disordered emotional regulation.

3.9. Visual disorders

Autism has been characterized in part as an impairment in rec-
ognizing facial expressions. Hernandez et al. [177] reported that
their group with autism spent less time viewing the eye region
than healthy subjects, who began their exploration of a face by
looking at the eyes in the field contralateral to their dominant
eye. The latter strategy was impaired in the group with autism.
Webster and Potter [178] would agree that a deficit in face-to-face
eye direction is usually observed in children with autism, but that
this deficit typically normalizes in adolescence. Also, other data
[179] showed that a deficit in rapid facial reactions disappeared
with age. In addition, Sterling et al. [180] confirmed the abnormal
gaze patterns in autism, but claimed normal reaction times in the
group with autism. Other investigators [181] emphasized that the
group with autism fixated not on the eyes, but on the mouth, even
when faces were inverted. Another group [182] added that there
was a decrease in face recognition accuracy, likely from autonomic
reactivity to eye contact, that would interfere with facial identity
processing. As Pellicano [183] summarized, children with autism
gained considerably less information from the eyes and more from
the mouth. On the other hand, Homer and Rutherford [184] added
that children with autism do perceive at least some facial expres-
sions correctly.

Jones et al. [185] concluded that the deficiency of looking at the
eyes of others likely begins in 2-year-old children, while looking at
the mouth increases at that same time. Other investigators [186] at-
tempted to determine whether differences in visual attention could
contribute to initiative difficulty, and positive evidence was found
for this likelihood. Scherf et al. [187] recognized the poor face rec-
ognition skills in autism, but generalized that these deficiencies
would interfere with the ability to undertake any configural pro-
cessing. Other investigators [188] concluded that in these children
the visual pathway was intact at lower subcortical levels, but im-
paired at higher cortical levels. Van Kooten et al. [189] investigated
the neurons in the fusiform gyrus that supported facial processing,
reporting reduction in (1) neuron densities in layer III, (2) total neu-
ron numbers in layers III, V, and VI, and (3) mean volumes in layers
V and VI. Another group [190] concluded that a dysfunction in hor-
izontal connections within the visual areas is likely involved.
Adolphs et al. [13] moved beyond the child and examined the par-
ents, reporting that they also showed a reduction in processing the
eye region and demonstrated enhanced processing of the mouth.
Another group [191] expanded this type of study into siblings of
children with autism, reporting that the siblings showed a pro-
longed latency to the occipital P400 event-related potential (ERP)
in response to the direct gaze.

A number of investigators have contrasted children with autism
with those with Williams’ syndrome (WS), who tend to be opposite
in some ways to those with autism by being outgoing toward oth-
ers. Riby and Hancock [192] reported that in WS there was pro-
longed face gazing, and in autism, reduced face gazing. The same
group of investigators [193] later added that those with WS
showed greater accuracy for matching faces, using upper more
than lower features. In particular, in WS, there was greater detec-
tion of the eye than the mouth, whereas children with autism
showed deficits in these matches. Still later, the same group
[194] summarized that the group with autism spent less time
viewing people and faces, whereas those with WS fixated exagger-
atingly on the eyes. Krysko and Rutherford [195] confirmed the
deficiency in persons with autism who could not differentiate an-
gry from happy faces as well as could healthy persons.

Other studies have explored beyond the deficit of facial recogni-
tion in autism. Mongillo et al. [196] reported that persons with aut-
ism scored poorly not only on visual, but also auditory tasks
involving human faces and voices, but not in tasks involving emo-
tional faces. Other data [197] indicated that those with autism per-
formed normally with neutral faces, but were impaired with
nonhuman stimuli. Anderson and Colombo [198] reported a larger
pupil size at rest but a decreased pupil response to human faces.
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Other investigators [199] reported a difficulty in tracking visual
targets in children with autism, similar to other findings [200] that
these children were poor in judging gaze direction. Franklin et al.
[201] concluded that children with autism also had a deficiency
in color memory.

All of the aforementioned studies have concluded that children
with autism have visual deficiencies, but other studies have drawn
some opposite conclusions. For example, one group [202] found
that adults with autism were faster and more accurate at detecting
eye gaze than controls. Rutherford and Towns [203] would have
challenged some of the previously mentioned results, as they con-
cluded that the ratio of attention to eyes/attention to mouth did
not differ between the autism and control groups. Other investiga-
tors [174] determined that an accelerated response time and short-
er fixations indicated an advantage in children with autism, related
to enhanced perceptual functioning. Finally, one surprising finding
was reported by Ashwin et al. [204], who concluded that children
with autism have superior visual abilities with a significantly bet-
ter visual acuity at 20:7 (!), so superior that it lies in the domain
reported for birds of prey.
3.10. Diet

One group of investigators [205] explored dietetic approaches
in autism. Their summary of the literature findings on diets and
disorders included: (1) metabolic errors, like the phenylalanine
hydroxylase deficit responsible for phenylketonuria, possibly asso-
ciated with autism; (2) increased opioid activity from an excess of
peptides with gluten-free or casein-free diets involved; (3) in the
amino acid domain a deficiency of glutamic or aspartic acid; (4)
food allergy with high Ig levels; (5) in the area of glucidic catabo-
lism an excess of ketones; and (6) vitamin deficiencies, especially
vitamin B6 and B12. The conclusion of these investigators was that
despite the many studies on specialized diets, few are methodolog-
ically satisfying, side effects cannot be ignored, and vitamin sup-
plementation seems to be the only factor that some groups could
use, always with parental agreement. Herndon et al. [206] had a di-
rect approach and contrasted the diets of children with autism
with the diets of those with typical development. The group with
autism consumed more vitamins B6 and E, more nondairy protein
servings, less calcium, and fewer dairy servings. The lower dairy
serving intake persisted in the group with autism after controlling
for many other variables. One last study [207] looked at eating
behavior and found only that children with autism were more
likely to demonstrate ‘‘picky” eating, thus exhibiting problematic
eating and feeding behavior.
3.11. Changes in adulthood

Some studies have shown negative effects with age. Melville
et al. [208] reported that adults with autism had a greater preva-
lence of problem behaviors and were less likely to recover from
these behaviors over a 2-year period than their controls. Others
[209] were more specific about their findings in adults with autism
who had a severe ID. Compared with controls with only ID, the
adults with autism with ID showed impairments in social interac-
tion, restricted or repetitive behaviors, and interests constituting a
distinct pattern of impairment. One other negative change was
mentioned by Hallahan et al. [210]: although no difference was
found in head or brain volumes, adults with autism, compared
with controls, had a smaller cerebellar volume but a larger volume
of peripheral cerebrospinal fluid. One other study [211] reported
that 92% of women with autism had a late luteal phase dysphoric
disorder, compared with 11% of controls, thus indicating an in-
crease in premenstrual syndrome in many women with autism.
Other studies have reported positive effects with age in autism.
For example, Fletcher-Watson et al. [202] concluded that adults
with autism were faster and more accurate at detecting eye gaze
than controls. Also, age-related improvements were found in exec-
utive function from childhood to adolescence, but mature execu-
tive function was limited [212]. Another group [112] reported
that restricted repetitive behavior was less frequent and less severe
among older than younger individuals, corroborating that autism
may somewhat abate with age. One last study [179] reported that,
as children with autism age, their ability to match rapid facial reac-
tions to appropriate emotional facial expressions increases
significantly.

3.12. Savant syndrome

Savant syndrome (SS) [213] is ‘‘characterized by remarkable is-
lands of mental ability in otherwise handicapped persons.” Treffert
[213] reported that 10% of persons with autism exhibit savant abil-
ities; nearly one-half of those with SS have autism and the remain-
ing half have other forms of developmental disability. He also
pointed out that calendar calculations, various mathematical skills,
and extraordinary musical abilities can be observed, adding that
males show signs of SS four times more often than females. Pitch
discrimination is one area that has been reviewed in a few studies.
For example, Heaton et al. [214] completed studies on pitch dis-
crimination, reporting that a subgroup of individuals with autism
achieved performance scores 4–5 SD above the mean for controls.
The same group [215] explored identification of fundamental pitch
frequencies in complex tones, and also nine tones and words, and
reported that the group with autism ‘‘was highly superior in com-
parison to controls.” Finally, other investigators [216] described a
4-year-old boy who could identify the pitch of any isolated tone.
This absolute pitch is considered to be attributable to a single gene,
transmitted in an autosomal dominant fashion.

Calendar calculation is another feature of SS. One group [217]
reported a shorter reaction time and fewer errors regarding past
dates, but no differences were found between individuals with aut-
ism and controls in calculation of future dates. These findings im-
ply distinct calendar calculation when processing dates of the past
and present but not likely future dates.

Studies on superior visual abilities have also been reported.
Grinter et al. [68] claimed that individuals with autism were faster
and more accurate on visuospatial analysis tests. As previously
mentioned, another group [174] reported that the individuals with
autism had an accelerated response time and shorter fixation com-
pared with controls, indicating that these results of the eye move-
ments indicate an advantage in autism. Also, as previously
mentioned, Ashwin et al. [204] reported extraordinary visual acu-
ity at 20:7 in the group with autism, as an example of sensory
supersensitivity.

Takahata and Kato [61] addressed the issue of neural mecha-
nisms involved with SS. They classified the cognitive models of
SS into three categories: (1) savant skills develop from existing
or dormant cognitive functions, such as memory; (2) ‘‘paradoxical
functional facilitation” explains how pathological states may lead
to great skills, especially through reciprocal inhibitory interactions
between different brain areas; (3) the ‘‘autistic model” involves
underconnectivity for long-range connectivity, but a more en-
hanced local connectivity. The enhanced connectivity in the local
brain regions likely results in specialization and facilitation of cog-
nitive processing.

3.13. Prevalence

A wider range of values for prevalence can be found within the
United States and around the world, likely for many reasons,
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especially that different definitions exist and also testing for autism
varies significantly. If there are no clear criteria or tests for autism in a
given region, the stated prevalence for that region will likely be low.

Rapin and Tuchman [56] provided the number that most indi-
viduals have recognized and is usually reported in the media as
the prevalence in the United States, namely, 1 in 150 children; they
also claimed that there is no epidemic. In December 2008 Kogan
et al. [218], using the 2005–2006 survey of national data, indicated
the prevalence as 86 per 10,000 children aged 3–17, which is equal
to 1 per 116 children. Also, among children with special health care
needs, 5.6% (1 of 18 children) had autism. Other authors [95] have
also indicated that autism was more common than previously be-
lieved at 1 in 166 or 1 in 150.

Some investigators have determined the prevalence in a given
state. Nicholas et al. [219] sampled the prevalence and determined
the value in South Carolina to be 6.2/1000 or 1 in 161. In Olmsted
County in Minnesota [220], a clinical diagnosis of autism was given
to 1.5 per 100,000 (1/60,000) in 1980–1983 but to 33.1 per 100,000
(1/3000) in 1995–1997. In contrast, the prevalence of research-
identified autism increased from 5.5 (1/18,000) in 1980–1983 to
44.9 (1/2200) in 1995–1997. These very different values demon-
strate the variation between a ‘‘clinical diagnosis” of autism and
‘‘research-identified” autism, but the values from 1997 differ be-
cause the definitions and tests for autism were not the same then
as they are now.

An important study from Denmark [221] helps to clarify why
the prevalence of autism seems to have increased over time. All
children born in Demark (407,458) from January 1, 1994 to Decem-
ber 31, 1999 were the subjects. The numbers of children with
autism were counted separately for the periods 1994–1995,
1996–1997, and 1998–1999 and were diagnosed on average at
ages 5.9, 5.8, and 5.3 years, respectively. The conclusion was that
shifts in age at diagnosis inflated the observed prevalence and
the apparent increase in autism in recent years was, in part, attrib-
utable to a decrease in the age at diagnosis over time. Thus, for a
given survey at a given time, more children would already have
the diagnosis of autism.

Other countries have provided prevalence values. From China,
Wong and Hui [222] included in their study 4,247,206 person–
years from 1986 to 2005 for those <15 years of age, and from Hong
Kong, 1,174,322 person–years for those <5 years old. The preva-
lence for both populations was estimated at 16.1 per 10,000
(1/625) for children <15 years old. The authors claimed that these
values were similar to those for Australia and North America and
lower than those for Europe. From the United Kingdom, Williams
et al. [223] reported a prevalence of 51.1 per 10,000 (1/200) for
those with a multiprofessional diagnosis and 61.9 per 10,000
(1/162) from the Schools Census. The median age at diagnosis
was 45 months. From Australia, another group [224] provided data
for 6- to 12-year-old children from 2003 to 2004: 9.6–40.8 per
10,000 for state and territory data and 35.7–121 for national data.
These values (at the highest level) represent 1 in 277 and 1 in 244,
respectively. From Sweden, another group [225] attempted to
determine if children with a Somali background were overrepre-
sented among those with autism. The prevalence was found to
be three to four times higher in the Somali group than in the
non-Somali group. The values were 0.7 and 0.19%, equal to 1 in
143 and 1 in 526 children, respectively. Finally, for Latinos [226]
the prevalence was 26 per 10,000 (1/385) compared to non-Latinos
at 51 per 10,000 (1/196).

3.14. Neurophysiology

3.14.1. Electroencephalography
Mu activity at 7–12 Hz can be recorded from the central scalp

areas and is suppressed by movements or thoughts of movement
and also when the subject is observing others’ movements. The lat-
ter refers to the mirror neuron system (MNS) and is normally ac-
tive when observing others, proposed as deficient in autism.
Thus, suppression of mu activity, as a manifestation of the MNS,
was studied by Oberman et al. [33] who reported that the group
with autism showed mu suppression according to the degree of
familiarity of the individuals who were viewed. Thus, the MNS re-
sponded in individuals with autism, but only when observing a
familiar face. Cheng et al. [32] also used mu waves as an indicator
of the MNS and reported that females showed stronger mu sup-
pression than males, supporting the theory that autism represents
an ‘‘extreme male brain.”

Milne et al. [227] studied stimulus-induced changes in the al-
pha and gamma frequencies near the striate and extrastriate areas.
The group with autism showed a smaller effect and also a reduced
time to peak alpha power. The investigators concluded that these
results represent atypical processes during perception of visual
stimuli.

Hrdlicka [142] studied the relationship between the EEG and
autistic regression and reported that the data do not support such
a relationship, although acknowledging an association between
epilepsy and regression. However, other data [143] showed an
association between regression and a circadian rhythm disorder.
Another group [228] also reported on epilepsy and epileptiform
activity on the EEG, stating that 67% of children with autism had
EEG discharges, similar (59%) to what the present reviewer re-
ported 4 years ago [22]. Also, the former group [228] found a lower
synchronization in NREM sleep stages, confirming the validity of
the underconnectivity model in autism. Also confirming undercon-
nectivity was a study by Coben et al. [64] reporting low coherence
for most frequency bands. The study reporting on epileptiform
activity in autism [228] would likely require an EEG sleep study,
which could be best achieved in patients with autism by using dex-
medetomidine, according to one report [229].

3.14.2. Magnetoencephalography (MEG)
One group [230] claimed that most autism patients (22) had no

EEG abnormalities (!), but all children (!) with autism showed MEG
abnormalities as spikes, ‘‘as well as acute waves,” mainly in the
perisylvian areas. This report of normal EEGs in most children with
autism and MEG patterns as ‘‘acute waves” is very surprising and
could be challenged.

3.14.3. Evoked potentials and event-related potentials
Some investigators [231] have studied sensory gating by

recording auditory evoked responses. The P450 component was
suppressed to a second click, and especially reduced in those with
both autism and mental retardation, and also was associated with
increased EEG gamma power. The conclusion was that these re-
sults provided evidence for an ineffective inhibitory control of sen-
sory processing for the retarded group in autism. Another group
[232] studied evoked brainstem responses to speech syllables,
reporting evidence for a deficient pitch tracking, suggesting sub-
cortical involvement for the prosody-encoding deficits in autism.
Other investigators [233] recorded via the event-related potentials
(ERPs) (and MEG) at 400 and 750 ms to sentences with congruous
and incongruous words, with results suggesting that the group
with autism used unusual strategies for resolving semantic ambi-
guity. Rojas et al. [234] also used MEG to record evoked gamma
band power, which was found to be reduced in children with aut-
ism, as was the phase-locking factor, showing a deficient phase
consistency of neuronal responses to external stimuli. Other
authors [235] used ERPs and reported decreased components in re-
sponse to repetitive speech, but not to repetitive nonspeech. Also,
decreased orienting to novel tones was found in a sequence of
speech sounds, but not in a sequence of tones. The conclusion



J.R. Hughes / Epilepsy & Behavior 16 (2009) 569–589 579
was that in the group with autism, inhibition was used to decrease
responses to repeated streams of speech. Another group [236] used
ERPs for both error-related negativity (n) and positivity (p) to an
auditory task. Both the n and p components were reduced in the
group with autism, indicating an insensitivity to detect the possi-
bility of errors and suggesting perseverative behavior, as is often
noted in children with autism.

A few studies have used specific visual stimuli in studying aut-
ism. Lazarev et al. [237] studied photic driving on the EEG, show-
ing, in the group with autism, reduced driving on the right
hemisphere, providing evidence for a neurophysiological distur-
bance within that hemisphere. With 128-channel ERPs, responses
to face detection were weaker in the group with autism, suggesting
aberrant neurophysiological processing of facial emotion [238].
Trachtman [239] summarized all visual abnormalities in autism,
including abnormal electroretinograms (ERGs), deficient evoked
potentials (EPs), atypical opticokinetic nystagmus, and finally in-
creased incidence of strabismus and oculomotor deficiencies in
children with autism.
3.15. Neuroanatomical relationships

3.15.1. Prefrontal = frontopolar area
Montag et al. [240] investigated concentrations of glutamate by

magnetic resonance spectroscopy (MRS) and reported an associa-
tion between the concentration in the prefrontal (pF) area and an
interpersonal reactivity index, concluding that control of behavior
was mediated by pF glutamatergic projections. Also, brain scans
showed reduced activity in the ventral medial pF cortex (also in
the anterior cingulate cortex) across all judgment conditions and
also during a restful condition [241]. The results were considered
to provide a more detailed view of the default network functional-
ity and, thus, an abnormality in autism. Wicker et al. [58] used net-
work models and reported that the pF cortex was the key site for
the dysfunction of explicit emotion, also providing evidence of
abnormal long-range connectivity between the pF area and other
structures. On the other hand, microcircuit changes in the pF cor-
tex in a rat model showed hyperconnectivity and hyperplasticity
in the pF cortex, suggesting that deficits in autism should be inter-
preted in the light of a hyperfunctional pF cortex [242].

Uddin et al. [243] used event-related fMRI data to investigate
the brain’s responsiveness to images of the subject’s own face
and the faces of others. The group with autism recruited the pF sys-
tem only while viewing images of their own faces, suggesting that
this group lacked the shared neural representation for self and also
for others. Bookheimer et al. [244] reported that fMRI showed a
different activation in the pF and amygdala areas in social cogni-
tion. Another group [245] reviewed neurocognitive functioning
as a predictor of developmental variability, concluding that the
ventromedial pF (and also the medial temporal lobe) system was
useful in this prediction. Takahata and Kato [61] studied savant
syndrome and provided evidence that disruption of connectivity
between the pF cortex and other regions was an important factor,
also concluding that the pF region showed the most influential
inhibitory control over other cortical areas. Buckner et al. [246]
has helped to define the brain’s default network, a brain system
that is active when individuals are not focused on their external
environment. One of the two systems was the medial pF subsystem
that facilitates the flexible use of information from prior experi-
ences, likely deficient in autism. Finally, late ERPs and long-latency
gamma oscillations were stronger over pF (and central) areas to
certain words, indicating to the investigators an abnormal seman-
tic organization [233]. ERP responses related to mental state
decoding were weaker in the medial pF areas, representing aber-
rant cortical specialization within brain networks [238].
3.15.2. Frontal cortex
A number of investigators have emphasized the right frontal

area. Lee et al. [54] studied functional connectivity MRI (fcMRI),
especially of the inferior frontal cortex, reporting, in adults with
autism, a reduced connectivity of this frontal area but only on
the right. The authors concluded that an atypical developmental
trajectory exists for the right inferior frontal connectivity with
other neural regions. Kleinhans et al. [247] reported that greater
social impairment was associated with an increased face area
and right frontal connectivity. The same authors [247] also con-
cluded that it was the right frontal (and right temporal) lobe that
showed greater activation in fMRI to letter fluency in the group
with autism. Also, by checking functional asymmetry in the frontal
cortex, reduced lateralization of activation patterns was observed.
The authors suggested that this functional organization may con-
tribute to the language impairment in autism. One other study
[248] showed differential modulation of right lateral midfrontal
activation by high arousal stimuli in autism. Finally, Ke et al.
[249] reported that an enlargement was seen in the right medial
frontal gyrus along with other areas in autism.

One study [250] emphasized the left frontal area in an MRI
study on a language task. Males with autism had stronger activa-
tion than controls in Broca’s area, less lateralized on the left, sug-
gesting differences in semantic organization in autism.

Other studies of the frontal lobe in autism have emphasized
both frontal areas. One group [251] studied SPECT scans in autism,
reporting hypoperfusion in various areas, including the bilateral
cortex in some scans, in the right inferior frontal and left superior
frontal areas in other scans. The same type of hypoperfusion was
found in the parents and also the siblings. Keehn et al. [252] used
event-related fMRI to visual stimuli to show greater activation in
frontal (also parieto-occipital) regions in individuals with autism
than in controls. The conclusion was that a search efficiency in aut-
ism may be related to increased modulation of visual attention.

On the other hand, similar to the studies of the aforementioned
group [251], most investigations have emphasized deficiencies in
the frontal lobe, exemplified by one study [154] reporting an alter-
ation of receptor GABRA1 in the superior frontal cortex. Makkonen
et al. [253] concluded that only in the medial frontal cortex was
there reduced serotonin transporter binding capacity, possibly re-
lated to a smaller number of serotonergic nerve terminals in aut-
ism. Bonilha et al. [254] summarized MRI findings in autism,
reporting an increase in gray matter in medial and dorsolateral
frontal areas, but a decrease in white matter, also seen in other re-
gions. The investigators considered that this enlarged cortex, but
with reduced white matter, may be the structural basis for some
symptoms in autism.

3.15.3. Cingulate cortex
One group of investigators [255] studied metabolites in autism

through proton MRS, reporting an increase in myo-inositol and
choline peak areas and also in the myo-inositol/creatine ratio in
the anterior cingulate (and also left striatum). Using MRI, Chiu
et al. [256] reported a severely diminished cingulate response
when males with autism were playing a game with a human part-
ner. In another kind of game, a trust game with a partner, an unu-
sual lack of brain activity was reported in the midcingulate cortex
when the group with autism made their ‘‘investments” [257]. The
speculation was that the results may arise because the group with
autism may have been unaware that in this game the partner’s
trust would likely have changed. In an aforementioned study using
scanning studies [241], the ventral anterior cingulate cortex (with
the pF cortex) showed a reduction across all judgment conditions
and also during a resting condition, suggesting a dysfunction inde-
pendent of tasks. Another study on functional neuroimaging [258]
showed hypoactivation in the perigenual anterior cingulate cortex
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in social tasks and also in the dorsal portion in nonsocial tasks, pos-
sibly part of a default mode network regulation in autism. In EEG
studies, Milne et al. [227] interpreted the increase in the induced
alpha power in the cingulate gyrus as possibly related to atypical
perception in autism. Another group [236] used ERPs to conclude
that error-related negativity was smaller in the group with autism
localized in the anterior cingulate cortex, possibly related to per-
severative behavior, often noted in autism. Buckner et al. [246] also
were concerned with the brain’s default network, concluding that
the subsystems’ coverage for integration include the posterior cin-
gulate cortex. Finally, event-related MRI was used to examine neu-
ral substrates of monetary rewards in autism, with the conclusion
that such rewards were associated with greater activation in the
left anterior cingulate gyrus [259]. Also, activation of this region
was negatively correlated with social interactions and this same
region is also known to be responsible for attention and arousal.
The emphasis placed on the anterior cingulate by Thakkar et al.
[260] was related to rigid and repetitive behavior, presumably
associated with disconnections in this structure.

3.15.4. Cerebellum
Knickmeyer et al. [261] performed a structural MRI study of

brain development from birth to 2 years of age, reporting that cer-
ebellum (CBL) volume increased by 240% in the first year of life,
with gray matter increasing substantially and white matter growth
much slower. The study suggests a structural underpinning of
development in early childhood and also a potential pathogenesis
of developmental disorders like autism. Hrdlicka [262] confirmed a
larger CBL volume in autism, as did others [258]. Another group
[263] reported that GABBR1 and GABBR2 receptors were signifi-
cantly reduced in the CBL, possibly helping to explain, according
to the authors, the occurrence of seizures in autism. The same
group [264], at another time, had confirmed that GABRA1 and
GABRB2 receptors were altered in autism. Wills et al. [265] studied
autoantibodies to neural cells of the CBL in the plasma of a group
with autism. They found that 21% of the children with autism
had antibodies with a specific reactivity to a CBL protein. Also, an
intense immunoreactivity to Golgi cells of the CBL was noted in
21% of the group with autism, not seen in controls. Rout and Dhos-
sche [88] postulated that anti-glutamic acid decarboxylase anti-
bodies were the basis of many autistic symptoms, associated
with Purkinje cell loss and CBL atrophy. Finally, another group
[266] used quantitative MRI analysis and concluded that macroce-
phalic individuals with autism tended to have smaller CBL volumes
and surface areas. As the CBL is under discussion here, the posterior
fossa is relevant. Williams [267] has stated that a large head size
predisposes to autism, and the larger posterior fossa in the male fe-
tus allows higher peaks of pressure in the lateral ventricles, result-
ing in a larger head size, often seen in autism.

3.15.5. Amygdala
Kleinhans et al. [247] dealt with abnormal functional connectiv-

ity in autism and reported that greater social impairment was
associated with reduced connections between the fusiform face
area and the amygdala, representing an abnormal neural connec-
tion within the limbic system. Another group [268] confirmed
the impaired connectivity between the amygdala and other critical
regions in the ‘‘social brain.” Conturo et al. [269] used MRI diffu-
sion-tensor tracking and reported abnormal microstructure in the
amygdala–fusiform pathways, also showing increased across-fiber
and along-fiber diffusivity. With fMRI during a face processing
task, abnormalities appeared in the amygdala (and pF cortex),
implicated in social cognition, specifically during face processing
[244]. Ashwin et al. [270] presented the ‘‘amygdala theory” in aut-
ism, characterized by deficits in understanding others, possibly re-
lated to atypical function of the amygdala, especially because
patients with acquired amygdala damage show similar symptoms.
Evidence included less accuracy in the group with autism on the
emotion recognition task, involving negative basic emotions. An-
other group [271] reported that amygdala function was associated
with a genetic variation in the gene AVPRIA, a vasopressin regula-
tor gene. These results indicated a neural mechanism mediating a
genetic risk for autism through an impact on amygdala signaling.
Finally, Gabis et al. [272] used MRS markers of cognitive and lan-
guage ability in autism, showing lower NAA/CR ratios in the hippo-
campus–amygdala region and also an elevated choline/CR ratio on
the left side of that same region.

3.15.6. Temporal and associated areas
In a SPECT study, one group [251] observed hypoperfusion in

the temporal lobe and also in other areas. Also, in other areas in
an fMRI study, children with autism failed to show a correlation
between temporal and frontal language area activation in the left
hemisphere while controls showed such a correlation [250]. These
results suggest differences in semantic organization in autism.
Munson et al. [245] concluded that the important predictors of
developmental variability are found in the medial temporal lobe
(and also pF areas). In addition, data [273] indicated that difficul-
ties in emotional awareness were related to hypoactivity in the
anterior insula. Kleinhans et al. [274] studied language in autism
and found greater activation in the superior temporal lobes (and
also right frontal lobe) in letter fluency, suggesting a reduced hemi-
spheric differentiation for verbal fluency tasks in autism.

The anatomy was the interest in two studies. One group [254]
concluded that an increase in gray matter was found throughout
the temporal lobe, but also a decrease in white matter appeared
along with other areas. Also, Awate et al. [78], in a group with aut-
ism, showed increased cortical folding in the temporal lobe (also in
the frontal and parietal lobes) possibly related to increasing neural
complexity.

Neurophysiological studies have also been performed. Some
investigators [230] used MEG and reported spike discharges, espe-
cially in the perisylvian regions. Also, ERPs recorded with MEG by
another group [233] showed weak responses to incongruous words
over the left temporal cortices. The authors concluded that chil-
dren with autism use unusual strategies for resolving semantic
ambiguity. Finally, Pierce and Redcay [275] reported that a selec-
tive deficit appeared in the nearby fusiform gyrus only when the
group with autism viewed faces of strangers.

3.15.7. Visual cortex
Bolte et al. [276] performed an MRI study of perception in aut-

ism, reporting that the processing of a design test was associated
with altered responses of selective neurons in the right ventral
quadrant of part of the visual cortex. A visual search test revealed
greater activation in the visual cortex (also frontoparietal), likely
related to enhanced discrimination and increased modulation of
visual attention [252]. Finally, Bonilha et al. [254] reported that pa-
tients with autism showed a decrease in white matter in the visual
cortex (as well as the frontal, temporal, and parietal cortex) in
association with a generally enlarged cortex.

3.15.8. Subcortical structures
Jou et al. [169] studied brainstem volumetric changes in autism,

reporting a decrease in brainstem gray matter volume, but without
changes in white matter volume, possibly related to sensory defi-
cits. Mehler and Purpura [277] were specific about the subcortical
structure involved, namely, the locus coeruleus. They noted that
some children with autism improve their behavior during febrile
episodes, hypothesizing the normalization of an impaired locus
coeruleus–noradrenergic (LC–NA) system. They suggested that
autistic behavior resulted from developmental dysregulation of
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the LC–NA system. This hypothesis has implications for designing
biological detection systems and also therapeutic agents that tar-
get this system. Kulesza and Mangunay [278] were concerned with
auditory deficits and examined the superior olive, which functions
in sound source localization. They reported a disruption in the
morphology in the medial superior olive in the group with autism
to explain hearing difficulties in this group. Other investigators
[90] have studied MRS metabolites and reported lower levels of
NAA, phosphocreatine, creatine, and choline-containing metabo-
lites on the left side of the thalamus without finding differences
in thalamic volume. Kilian et al. [279] studied the corpus callosum,
which is often observed to be decreased in size in autism. They re-
ported that the normocephalic group with autism had a smaller
corpus callosum genu and midbody, but in the macrocephalic
group with autism, the entire corpus callosum was larger.
3.15.9. Brain in general
Vaccarino et al. [173] acknowledged that an increase in brain

size is common in children with autism, proposing also an in-
creased number of excitatory neurons, minicolumn pathology,
and excessive network excitability, leading to sensory hyperreac-
tivity and seizures. They suggested that fibroblast growth factors,
regulating cortical size and connectivity, may be responsible for
the developmental alterations. Brain size was also the concern of
another report [210], concluding no difference in head or brain vol-
ume in the group with autism. However, these authors also re-
ported a reduction in the bulk of the cerebellum and an increase
in peripheral cerebrospinal fluid. Another group [280] dealt with
somatic cortical maps with MEG and reported a larger distance be-
tween the cortical representations of the thumb and lip, which is
the first demonstration of abnormality in the sensory organization
in the brains of children with autism. Amaral et al. [281] were also
concerned with the brain in general, concluding that the heteroge-
neity of both the core and comorbid features predicts a heteroge-
nous pattern of neuropathology in autism. Another group [282]
studied cerebral blood flow, reporting right-to-left asymmetry of
hemispheric perfusion with right prevalence and a left hemi-
spheric dysfunction in the group with autism.
3.16. Comorbid conditions

3.16.1. Down syndrome
Bolte et al. [55] stated that autism occurs 10 times more often in

children with Down syndrome (DS) than in the general population.
Patients with both autism and DS performed more poorly on all
assessments than those with DS without autism, especially on lan-
guage, cognitive, and adaptive skills, seizures, social interaction,
and repetitive and stereotyped behavior. The same group [283]
earlier had compared the children with both autism and DS with
those with only autism. They reported that those with both autism
and DS acquired use of single words at 41 months, in contrast to
15 months for the group with only autism. The mean age for loss
of language during regression was, however, 62 months for the
group with autism and DS, compared with 20 months for the group
with only autism.
3.16.2. Cornelia de Lange and Cri du Chat syndromes
Moss et al. [284] evaluated children with both syndromes and

reported that 62% of those with Cornelia de Lange and 39% of those
with Cri du Chat scored above the cut off on the Autism Diagnostic
Observation Schedule. Others [285] have also studied patients with
Cornelia de Lange, reporting that severe autism was found in 32%
of the latter group, who also showed compulsive behavior.
3.16.3. Tuberous sclerosis
Kothur et al. [286] reported that patients with tuberous sclero-

sis constitute 1–4% of those with autism, and individuals with aut-
ism and tubers were more likely to have them in the temporal
areas than patients with tubers without autism. De Vries [287]
added that a similar 1–5% of individuals with autism have tuberous
sclerosis and that up to 50% of patients with tuberous sclerosis met
criteria for autism. The author suggested that dysregulation of
intracellular signaling through the TSC½–mTOR (tuberous sclerosis
complex ½–mammalian target of rapamycin) pathway may be suf-
ficient to lead to autism and drugs that are TOR inhibitors may re-
verse some aspects of the deficits in tuberous sclerosis.

3.16.4. Psychiatric disorders
Mouridsen et al. [288] conducted a Danish study with the mean

observation time of 33 years and mean age at follow-up of
41 years. Among those with infantile autism, 48% had been in con-
tact with psychiatric hospitals, 17% had a comorbid psychiatric
diagnosis, but only 3% were diagnosed with schizophrenia and
3% with affective disorders. Simonoff et al. [289] added more
impressive values, stating that 70% had at least one comorbid psy-
chiatric disorder and 41% had two or more. Also, the most common
diagnoses were social anxiety disorder (29%), attention deficit
hyperactivity disorder (29%), and oppositional and defiant disorder
(28%). Finally, other investigators [290] added that 16% developed
a definite new psychiatric disorder, but none had schizophrenia.

3.16.5. Attention deficit hyperactivity disorder
One of the aforementioned groups [289] pointed out that 29% of

the group with autism had ADHD. Ronald et al. [291] studied 6771
twin families and reported significant correlations (0.54) between
autistic and ADHD traits. Also, 41% of children with ADHD met cri-
teria for autism. These data are relevant to the question of molec-
ular genetic influences. Reiersen et al. [292] also studied twins
(851) who had ADHD and reported that children with the combi-
nation of motor coordination deficits and ADHD were more likely
to have high levels of autistic symptoms.

3.16.6. Fragile X syndrome
One group [293] studied fragile X syndrome (FXS) with and

without autism, reporting that a difference in the incidence of
medical problems was found between those with both FXS and
autism (37%) and those with FXS alone (18%). The conclusion
was that this additional brain disorder is likely associated with
medical problems that enhance the risk of autism. Zingerevich
et al. [294] were more specific about the relationship, reporting
that 60% of the children with FXS met criteria for autism (or a per-
vasive developmental disorder). The latter group with autism had
lower fine motor scores, and the authors concluded that children
with FXS and autism are therefore at risk for impaired motor
abilities.

3.16.7. Various other disorders
One group [295] investigated 95 patients with infantile spasm

and reported that the odds ratio (OR) for autism associated with
infantile spasms was 5.53, and that when adjusted for symptom-
atic seizures it was 1.55. The OR for autism associated with symp-
tomatic seizures adjusted for infantile spasms was 8.73. The
conclusion was that infantile spasms predicted the risk for autism,
but this was explained in part by the association of autism with the
symptomatic origin of seizures. Ozgen et al. [296] studied minor
physical anomalies and reported that pooled results of seven stud-
ies indicate a correlation of minor physical anomalies in autism at
the level of 0.84. Van Rijn et al. [297] studied patients with Kline-
felter syndrome and reported increased distress during social
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interactions for those patients, indicating a vulnerability to autism
in this syndrome.

3.17. Treatment

3.17.1. Risperidone
Risperidone is usually the drug most often mentioned for the

treatment of autism. Canitano and Scandurra [298] have concluded
that risperidone ‘‘seems to be moderately efficacious and safe for
treating.” Others [299] have reminded us that risperidone acts
via dopamine D(2) and serotonin 5HT(2A) receptor antagonism.
Those authors concluded that the drug reduces irritability and
other behavioral symptoms associated with autism. Adverse
events were mild-moderate in intensity, involving weight gain,
somnolence, and hyperglycemia. Aman et al. [300] added that
doses up to 3.5 mg for up to 8 weeks produced no decline in any
performance, and specifically better performance on cognitive
and learning tasks.

3.17.2. Ziprasidone
Ziprasidone was studied by Malone et al. [301], who concluded

that it was weight neutral and that 75% of the group with autism
responded to treatment.

3.17.3. Atypical antipsychotic medications
Posey et al. [302] concluded that atypical antipsychotic drugs

have become indispensable, and are used in autism to treat irrita-
bility, aggression, self-injury, hyperactivity, and stereotyped
behavior. They also reviewed the possible problems of weight gain
and tardive dyskinesia. ‘‘Second-generation antipsychotic medica-
tions” were studied by others [303] who reported that these med-
ications seem to reduce psychomotor agitation and aggressive
behavior. Fido and Al-Saad [304] reported on olanzapine in partic-
ular, concluding that this treatment can alleviate irritability, hyper-
activity, and lethargy. Side effects, like weight gain and tardive
dyskinesia, could not be studied because of the short period of
the study.

3.17.4. Psychostimulants
Nichols et al. [305] used psychostimulants and reported favor-

able responses in 69%, but at least one side effect was seen in
66%. The conclusion was that these medications may improve
hyperactivity, impulsivity, disinhibition, and inattention. Another
study [306] reviewed data from 21 trials on tianeptine, methylphe-
nidate, risperidone, clonidine, and maltrexone, but methylpheni-
date and risperidone were the only drugs for which results were
replicated in at least two studies. Clonidine was investigated by
Ming et al. [307], who reported decreased sleep latency and night
awakening and improved attention deficits, mood instability, and
aggressiveness.

3.17.5. Various other medications
James et al. [308] were concerned with metabolic abnormali-

ties, like transmethylation metabolites and glutathione redux sta-
tus, and therefore they examined the effects of treatment with
methylcobalamin and folinic acid for 3 months. Pretreatment con-
centrations were different from those of controls, and after-treat-
ment increases in cysteine, cysteinglycine, and glutathione were
observed. The investigators concluded that this nutritional inter-
vention could be beneficial in autism. Other authors [309] used
melatonin for insomnia in autism and reported that 60% had im-
proved sleep with this safe and well-tolerated treatment. Meguid
et al. [310] reported that Efalex (fish oil), a free polyunsaturated
fatty acid (PUFA), produced clinical and biochemical improvement,
associated with high levels of linolenic and docosahexaenoic acid,
in 66% of children with autism. Finally, one group [311] used pro-
pranolol to decrease noradrenergic activity, for verbal problems in
autism; children with autism benefited on a test of simple ana-
grams, whereas controls were impaired on the propranolol.

3.17.6. Therapeutic procedures
Investigators [312] used low-frequency repetitive transcranial

magnetic stimulation, possibly to increase the surround inhibition
of minicolumns. Improvement was based on ERPs and induced
gamma activity, and it was specifically behavioral improvement
that was reported. Whittingham et al. [313] used the positive par-
enting program (Triple P) and reported improvements in parental
statements about their own child’s behavior. Scalp acupuncture
has also been used, with improvement in cognitive and expressive
language skills [314]. Burrows et al. [315] used service dogs as a
sentinel of safety, facilitating public outings and improving social
recognition, but with continuing data collection on this method.
Earlier, the same group [316] had been more specific about service
dogs, claiming that the dogs formed social relationships with both
the parents and children and therefore were helpful to the children
with autism. ‘‘Transcranial micropolarization,” small direct cur-
rents of 300–500 lA for 30–40 min, was used in Russia [317],
where it increased mental functions and development of commu-
nicative skills. Montes and Halterman [318] reported that greater
use of child care services was related to a higher probability of bet-
ter employment decisions. Teaching patients with autism to initi-
ate and respond to bids for joint attention has also been urged
[319]. In Thailand, one group [320] using hyperbaric oxygen ther-
apy reported a 75% improvement rate with 1.3 atm for 10 sessions.
Helt et al. [321] addressed the question of whether children with
autism could ever recover and, if so, how? They reviewed evidence
that 3–25% lose their diagnosis and become normal in time. Predic-
tors of recovery were relatively high intelligence, receptive lan-
guage ability, verbal and motor imitation, and also motor
development, but not symptom severity. Seizures, mental retarda-
tion, and genetic syndromes were unfavorable signs. Tics, depres-
sion, and phobias were frequent residual comorbidities after
some recovery. Mechanisms of recovery include normalizing input
by trying to encourage attention outward, enriching the environ-
ment, promoting the reinforcement value of social stimuli, pre-
venting interfering behaviors, practicing weak skills, reducing
stress, stabilizing arousal, and improving nutrition and sleep qual-
ity. Finally, Spreckley and Boyd [322] reported that ‘‘applied behav-
ioral intervention” had not proven effective and ‘‘standard of care”
is advised.

4. Summary

The goal of this report was to survey 1300 publications on aut-
ism published in 2008 and to summarize the findings of those
studies that came to specific conclusions or included relevant data.

One of the major differences between the present review of
2008 publications and the previous review of the 2007 studies
[1] is the present emphasis on the observation of similar character-
istics in children with autism and their parents. The psychological
changes include parents’ depression, shyness, personality disor-
ders, anxiety, family conflict, and alexithymia, which are related
to many of the symptoms of autism. Age of the parents, especially
>35 years for mothers and >40 years for fathers of firstborn chil-
dren, was at times associated with autism. Other parental charac-
teristics included poor sleep quality, decrease in processing the eye
region in faces of others, and lower Performance IQ.

Maternal conditions relevant to autism included hypertension,
albuminuria, generalized edema, chorioamnionitis, and intrapar-
tum hemorrhage. One intriguing question is whether the world-
wide increased folate status of mothers during pregnancy has
altered the prevalence of autism by decreasing the number of mis-
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carriages through reduction of hyperhomocysteinemia with the
genotype MTHFR C677T polymorphism. To test the theory that
autism represents an ‘‘extreme male brain,” data on the number
of brothers among siblings did not prove to be significant. Births
of children with autism peaked in April, June, and October for sin-
gle births and one month earlier for multiple births.

The topic of genes and chromosomes was deemphasized in this
review mainly because at least 334 new genes are now known to
interact with many published genes, and so a separate review is re-
quired. One new area is that of imprinting genes, expression of
which is determined by the parent who contributed them. Autism
appears to involve a bias of paternally expressed genes which may
mediate neuronal overgrowth. One other hypothesis is that autism
may be involved with the dysregulation of brain-expressed genes
on the X chromosome, resulting in an unbalanced production of
proteins responsible for brain structure and function.

Possible etiological factors are numerous. First is the aforemen-
tioned ‘‘extreme male brain,” suggested because females tend to
excel in social relationships and empathy, which are usually defi-
cient in autism. One study reported that fetal testosterone levels
were not high in mothers with children with autism. However,
high fetal testosterone levels did correlate with deficiencies in
empathy and symptoms suggestive of autism. Finally, females
showed stronger suppression of mu EEG waves, supporting the
‘‘extreme male brain.”

Another theory involves the mirror-neuron system, cells that
are active when viewing the movements of others, which is consid-
ered deficient in autism. One marker was mu suppression seen in
one study only when familiar individuals were viewed by children
with autism; this suppression is also reported as diminished in
autism. Children with autism did not show a ‘‘between-person” ef-
fect, but did show a ‘‘within-person” effect consistent with a core
feature of autism. The mirror-neuron system is linked to the The-
ory of Mind, a metarepresentation of mental states, likely a viable
construct.

A major controversy has been whether thimerosal, a mercury-
containing preservative in some vaccines, is in any way responsible
for autism. There is considerable evidence against this possibility,
including statements from the FDA, updated on June 3, 2008, that
for years this preservative has been removed from nearly all vac-
cines. However, a few studies have kept this controversy alive. In
the Hannah Poling legal case, the patient and the family were
awarded funds because a vaccine exacerbated a mitochondrial dis-
order in the child who also had autism. Thus, the funds were
awarded not because the vaccine caused autism, but because the
vaccine worsened the mitochondrial disorder that was possibly re-
lated to the autism. Male mice more often succumb to thimerosal
than female mice, possibly related to the greater prevalence of
males with autism. Children with severe autism showed increased
urinary porphyrins possibly associated with mercury intoxication,
and increased rate ratios of mercury over time have been reported
in autism as well as other disorders. On February 12, 2009, the U.S.
Court of Federal Claims announced its decision that ‘‘vaccines were
not to blame.” This decision was based on an enormous amount of
data.

There exists considerable evidence of one firm finding in aut-
ism: cortical underconnectivity. Additional data include reduced
connectivity in the right inferior frontal cortex and decreased con-
nections between the fusiform face area and the amygdala also
involving the prefrontal cortex. Savant syndrome can be viewed
as increased local hyperconnectivity in compensation for general
underconnectivity. Hypocoherence in EEG activity also has been
observed and is consistent with deficient cortical connections.

Another hypothesis in autism deals with a mechanism of defi-
cient central coherence, the integration of diverse information on
details and a deficiency in dealing with the general. As evidence
against the relevance of this concept, performances on memory
and face recognition tasks were not related and executive impair-
ments were not universal. However, clustering of symptoms does
at times occur, and visual tasks may show a deficit in holistic
processing.

Specific etiologies include mitochondrial dysfunction with evi-
dence of a disturbance in mitochondrial energy production and also
high lactate levels. Immunological disorders include evidence of
immunoexcitotoxicity with repeated microglial activation, decrease
in transforming growth factor b1 levels, and folate receptor autoim-
munity. Congenital disorders, especially tuberous sclerosis, greatly
overlap with autism. Also, cortical thickness and folding are likely
relevant. Deficient proteins include fragile X mental retardation pro-
tein, in addition to mGluR5 antagonists and aberrant synaptic pro-
tein synthesis. Metabolic disorders include hyperbilirubinemia,
glucose-6-phosphate dehydrogenase deficiency, atypical porphyrin
levels, abnormal transsulfuration metabolites, dysfunctional dopa-
mine transporters, abnormal serotonin metabolism, glutamic acid
decarboxylase antibody, and increased folic acid levels in mothers.
Low levels of essential amino acids, of N-acetylaspartate and crea-
tine, and also of cortisol have been reported. Interactions involve
both heritable and nonheritable factors; even an increase in local
precipitation has been mentioned as a possible factor. The intense
world syndrome, resulting from hyperfunctionality in autism, can
also be considered. Assessments of autism include the popular Mod-
ified Checklist for Autism in Toddlers and the Childhood Autism
Spectrum Test, for children 2–9 years of age, movement symmetry,
repetitive movements, and also birth weight and gestational age.

Characteristics of children with autism include repetitive
behavior, language impairment, sleep disorders, social problems,
deficient joint attention, seizures, allergic reactions, and abnormal
behavior. Cognitive changes involve abnormal reasoning and ver-
bal and language disorders. Children with autism have sensory
changes in general, either hyporeactivity or hyperreactivity. Adults
with autism most often complain of unusual perceptions, impaired
informational processing, and a disordered emotional regulation.
Visual disorders include the decrease in exploration of the eyes
of others in favor of concentrating on the mouth, resulting in poor
face recognition, although other data would challenge this general-
ity. Diet data have shown an increase in vitamins B6 and E taken by
those with autism. Changes in adulthood were often positive with
faster and more accurate detection of eye gaze, improvement in
executive function, and less frequent repetitive behavior. Savant
syndrome, a fascinating phenomenon, is observed in 10% of those
with autism, mainly in males, and is possibly a compensation in
minicolumn structure for overall general underconnectivity.

The prevalence of autism in the United States has usually been
stated as 1 in 150 children, but a more recent (December 2008) na-
tional study put it at 1 in 116. Reported rates of prevalence vary
significantly throughout the world, likely because of differences
in the tests and criteria used for autism. There is evidence that aut-
ism is being discovered and often diagnosed at an earlier age over
time, resulting in the appearance of an increasing prevalence.

EEGs reveal neurophysiological changes, especially the suppres-
sion of mu waves as an indication of the mirror-neuron system or
attention to the outside world, usually deficient in autism. Also, re-
duced alpha power, a large number of epileptiform discharges, and
low levels of coherence and syndronization have been reported.
MEG data include spikes. Inhibition of auditory evoked potentials
and (MEG) event-related potentials have shown evidence of unu-
sual strategies for resolving semantic ambiguity. Also reported
were reduced gamma power and responses to repetitive speech,
in addition to decreased responses suggestive of perseverative
behavior. Finally, reduced photic driving on the right, weak
event-related potentials to face detection, and abnormal electrore-
tinograms have been reported.
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Neuroanatomical relationships involve the prefrontal area with
its significant glutamate concentration, decreased electrical activ-
ity in the ventral medial portion, evidence of hyperplasticity in this
cortex, deficient responses to faces of others, and use of the ventral
medial portion to predict developmental variability. The prefrontal
area is viewed by some investigators as the most influential in
inhibitory control over other cortical areas, and the medial portion
is seen as a center for information from prior experience, with
weaker event-related potentials representing mental state decod-
ing. The frontal cortex is perhaps mentioned more than any other
area. There is evidence of reduced connectivity from the right fron-
tal areas, where responses to high arousal stimuli are associated
with social impairment and letter fluency; enlargement has been
reported in the right medial frontal gyrus. The left frontal area
was implicated on a language task. Both frontal areas were in-
volved with language impairment, showing hypoperfusion, as well
as greater activation in responses to visual stimuli there; changes
in receptor GABRA1 in the superior portion were reported. Re-
duced serotonin transporter binding capacity and increased gray
but decreased white matter have been reported in the frontal
areas. Cingulate cortex has often been mentioned in studies of aut-
ism, especially in relation to an increase in myo-inositol and cho-
line levels, decreased responses during certain activities,
reduction of rhythms in the ventral-anterior portions, and hypoac-
tivation in the perigenual part associated with social tasks and in
the dorsal part linked to nonsocial tasks. Also, increased alpha
EEG power has been reported in cingulate cortex, as has conver-
gence for integration in the posterior portion. The left anterior cin-
gulate is viewed as the area for reward appreciation, likely
responsible for attention and arousal, in addition to rigid and
repetitive behavior.

The cerebellum has also played a prominent role, increasing
gray matter by 240% in the first year but less for white matter. Also
reported were altered receptors GABBR1 and GABBR2, intense im-
mune reactivity to Golgi cells, and the presence of anti-glutamic
acid decarboxylase antibodies, associated with Purkinje cell loss
and cerebellar atrophy. The amygdala has shown abnormal func-
tional connectivity, reduced connections with the fusiform face
area and with other cortical regions of the ‘‘social brain.” According
to the amygdala theory, deficits in understanding others are re-
lated to this structure, which is also involved with less accurate
recognition of emotion. Finally, lower N-acetylaspartate/creatine
ratios in the amygdala, as well as the hippocampus, are related
to cognitive and language deficits.

The temporal lobe has also been the subject of a number of
investigations in autism. SPECT studies have reported hypoperfu-
sion, MEGs have recorded spikes, and anatomical studies have re-
ported increased cortical folding. No correlation has been found
between temporal areas and language area activation, but the
medial portion is an important predictor of developmental vari-
ability. The superior temporal lobe is related to letter fluency,
and in general an increase in gray matter and a decease in white
has usually been reported.

The ventral quadrant of the visual cortex of children with aut-
ism is associated with processing of a design. Greater activation
of this cortex has been observed on a visual search test, but a de-
crease in white matter has also been found.

Subcortical structures are also involved. A decrease in brain-
stem gray matter without changes in white matter was reported,
and the locus coeruleus is considered a site for developmental reg-
ulation. A disrupted superior olive nucleus has been considered to
explain disorders of sound localization. Metabolites on the left side
of the thalamus were reported as diminished without changes in
the volume of this structure.

The autistic brain, in general, is increased in size, possibly
through the activity of fibroblast growth factors. Changes in so-
matic cortical maps are reported, as is right-to-left asymmetry in
hemispheric perfusion.

Comorbid conditions include Down, Cornelia de Lange, and Cri
du Chat syndromes, tuberous sclerosis, various psychiatric disor-
ders, attention deficit hyperactivity disorder, fragile X syndrome,
infantile spasms, minor physical anomalies, and also Klinefelter
syndrome.

Treatment includes the frequently mentioned risperidone; zipr-
asidone; various atypical antipsychotic medications, especially
olanzapine; and psychostimulants, especially methylphenidate
and clonidine. Other medications were melatonin for sleep, Efalex
for biochemical improvement, and propranolol for verbal prob-
lems. Repetitive transcranial magnetic stimulation, positive par-
enting programs, scalp acupuncture, service dogs, transcranial
micropolarization, child care services, and hyperbaric oxygen are
therapeutic procedures that have been helpful. Other therapeutic
measures include encouraging outward attention, enriching the
environment, promoting reinforcement value of social stimuli, pre-
venting interfering behavior, practicing weak skills, reducing
stress, stabilizing arousal, and improving nutrition and sleep
quality.

As was mentioned in this author’s review of 2007 [1], nearly
every disorder a child can have may be observed in children with
autism. Optimistically, there are data suggesting that some symp-
toms may ameliorate over time.
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